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Many systems contain an internal time delay, which significantly influences their dynamical properties.
Methods to estimate this delay from times series in the presence of dynamical noise are not systematically
studied. Addressing this problem, we demonstrate that it is sufficient to analyze the system’s response to
short-correlated external disturbances or internal noise. Following this idea, it is shown for linear and nonlinear
systems, as well as for periodic dynamics, that the delay can be estimated by analyzing the correlation function.
This method covers the case of strong noise and multiple delays.
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I. INTRODUCTION

Understanding of the dynamical behavior of complex real
systems is a fundamental problem in physics. A variety of
measurement techniques are available for observing the dy-
namics of the systems with high temporal resolution. Further
insight into the underlying physical process governing the
dynamics can be obtained through time series data analysis,
which helps to extract the most important dynamical features
even if one does not have enough understanding of its com-
ponents. The ability of recovering the features of the dynam-
ics heavily depends on model assumptions and methodology
of data analysis. A key feature of real systems is the presence
of time delays in interaction between system components.
Time delayed dynamics plays an increasingly important role
in various fields of science including biology �1–3�, chemis-
try �4,5�, climatology �6,7�, �nonlinear� optics �8,9�, and
transport systems �10,11� among others. Time delays can oc-
cur over a broad range, with time scales spanning, for ex-
ample, from nanoseconds in laser systems up to several
hours in genetic networks. In general, time delays lead to a
very complicated and infinite high dimensional dynamics.
The identification and quantification of time delays from
time series is therefore an important task.

There exist different methods for reconstructing the delay
from given time series. Many of them rely on an extension of
the embedding theorem for deterministic chaotic systems and
uses the fact that the number of variables needed to embed
the system is drastically reduced if the delay is chosen cor-
rectly �12–18�. They differ mainly in the way this property is
tested. A related approach is to estimate numerically a model
from the time series �19–21� or to estimate the unknown
parameters for such a model �22�. The forecast error of these
models is minimized if the correct delay is chosen.

Most of the above methods do not take into account dy-
namical noise, i.e., noise which directly acts on the system
dynamics, even though they may work for small noise levels.
Furthermore, these methods can fail for nearly periodic states
�23�. Methods which are explicitly based on stochastic mod-
els and therefore consider dynamical noise are not system-
atically studied in the literature. Linear models have been

considered by �24�, coupled oscillators with a delayed cou-
pling have been considered by �23�, where dynamical noise
was essential for delay estimation.

In this paper we follow the idea that the delay could be
estimated by studying the response of the system to pertur-
bations of the system. The response is partially delayed and
identifying the general features of the response could help to
estimate the time delay. We will show that even the response
of the system to intrinsic noise, which is present in many
systems, is sufficient to estimate the delay and we introduce
a practical criterion for this.

To be more specific, let us consider the mathematical de-
scription of time delayed systems. Because of the delay, the
system’s dynamics cannot be described by an ordinary dif-
ferential equation �ODE� ẋ�t�= f(x�t�), where the time evolu-
tion is only determinate by the present state. Additionally the
state x�t−�� at time � ago has to be taken into consideration,
where � is the time delay. Therefore, such systems can be
more realistically modeled with a delayed differential equa-
tion �DDE�

ẋ�t� = f„x�t�,x�t − ��… . �1�

Due to the time delayed feedback, the initial condition has to
be a function ��t�, t� �0,��, the prefunction, and the dynam-
ics is much more complex in comparison to an ODE. For an
introduction to DDEs, see, for example, �25–27�.

If the system involves uptake and dissipation of energy, as
is usual in the case of complex systems, fluctuations of the
dynamics are present. This can be approximated mathemati-
cally by a stochastic delay differential equation �SDDE�,

ẋ�t� = f„x�t�,x�t − ��… + ��t� , �2�

where x is the actual state of the system, ��t� is a stochastic
force with some distribution, some correlation function, and
with vanishing mean ���t��=0. This SDDE is the underlying
model of the analysis presented in this paper.

In this paper we focus on linear and nonlinear stochastic
delay differential equations also including the case of mul-
tiple delays. A sufficient criterion is given, from which the
delay’s magnitude can be estimated. The noise plays the role
of a disturbance of the system and by analyzing the system’s
response to it, the delay can be estimated.*malte.siefert@gmail.com
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The paper is structured as follows. First, we present the
idea of the method and analytically the operability of the
proposed method for a linear SDDE. Then we extend the
underlying idea to nonlinear systems by means of Gaussian
approximation. The results are confirmed by analyzing nu-
merical generated time series. Finally, we present the estima-
tion of multiple delays.

II. THEORY OF THE DELAY ESTIMATION

A. Linear dynamics

In the following, the linear case is considered. It can be
analyzed exactly and explain how the delay can be estimated
by means of the responses of the system to the noise. Due to
the delay the response is partially retarded and by examining
the interaction between noise and delay the typical finger-
print of the time delay in the correlation function can be
found.

The starting point is the linear stochastic delay differential
equation �SDDE�

�x�t�
�t

= ax�t� + bx�t − �� + ��t� . �3�

Here ��t� denotes noise, which is allowed to have a finite,
but short correlation time. By multiplying this equation with
x and after averaging, one gets an equation for the correlation
Cxx�t�= �x�s�x�s+ t��. Similarly, an equation for the cross-
correlation function C�x�t�= ���s�x�s+ t�� results by multiply-
ing Eq. �3� by the noise �:

�

�t
Cxx�t� = aCxx�t� + bCxx�t − �� + Cx��t� , �4�

�

�t
C�x�t� = aC�x�t� + bC�x�t − �� + C���t� . �5�

The correlation C�� is given by the existing noise. Using the
symmetry Cx��t�=C�x�−t�, which is valid for stationary pro-
cesses, one can see that Eqs. �4� and �5� are closed equations
for the correlation functions. Assuming that the noise has a
short correlation time tcorr��, the cross-correlation function
Cx��t� can be obtained as follows �see Fig. 1�. For t�−tcorr

the noise does not influence the state x and accordingly the
cross correlation vanishes, C�x�t�=0. This means the pre-
function for Eq. �5� is zero and we have the initial condition
for Eq. �5�. Approaching t=0, C�� becomes finite and C�x�t�
increases fast due to the small width of C���t�; the increase
happens within times of the order of tcorr. For 0� t�� the
solution decays exponentially with time rate a. Figure 1
shows a typical sketch of this behavior for C�x�t�.

If noise actually helps to estimate the delay, then the re-
sponse of x�t� around t�� to the noise should reveal the
delay. Therefore, we establish in the following a relation be-
tween Cxx around t�� and the noise containing term Cx��t�
around t�0.

Equation �4� is differentiated once and in the second term
on the right hand side the time reversal symmetry of the
correlation function is used:

�2

�t2Cxx�t� = �a
�

�t
Cxx�t� − b

�

�u
Cxx�u��

u=�−t

+
�

�t
Cx��t� .

�6�

Inserting again Eq. �4� in this equation it follows that

�2

�t2Cxx�t� = a�aCxx�t� + bCxx�t − �� + C�x�− t�� − b�aCxx��

− t� + bCxx�− t� + C�x�t − ��� +
�

�t
C�x�− t� = �a2

− b2�Cxx�t� + aC�x�− t� − bC�x�t − �� +
�

�t
C�x�− t�

�7�

and since the correlation time of the noise is smaller than the
delay, it is for t��:

�2

�t2Cxx�t� � �a2 − b2�Cxx�t� − bC�x�t − �� . �8�

This equation relates the response of the correlation function
Cxx in the vicinity of t=� to the noise’s influence around t
=0. In this equation a remarkable property becomes visible.
Due to the dependence on the cross correlation, the second
derivative �2

�t2 Cxx changes fast around t=�, cf. Fig. 1. If the
noise becomes � correlated, the fast change becomes a jump
in the second derivate. This observation will be used in the
following as an estimator for the delay time.

B. Nonlinear dynamics

In the following nonlinear systems are considered and it
will be shown that the delay can be estimated analogous to
the linear case by analyzing the correlation function. We use
the Gaussian approximation to demonstrate that the method
works for nonlinear systems. The starting point is the non-
linear stochastic delay equation

�

�t
x�t� = f„x�t�,x�t − ��… + ��t� . �9�

Similar to the linear case, ��t� denotes noise, which can be
correlated as long as the correlation time is much shorter

FIG. 1. The typical course of the cross correlation function
C�x�t� �see Eq. �5�� with tcorr=� /50. Due to causal reasons, for t
�−tcorr the correlation is zero. Within −tcorr� t� tcorr the correlation
function C�� of the noise has its maximum and C�x�t� increases
steeply. For t� tcorr the noise has no influence anymore and the
system responds with an exponential decay, followed for t�� by an
evolution, which depends on the parameters a and b.
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than the delay time. After multiplying this equation by x�t�
and ��t�, respectively, and by subsequent averaging, we get a
differential equation for Cxx�t� and for C�x�t�, respectively.
On the right hand side, terms of the form �xf� or ��f� occur.
Using the Gaussian approximation, we can use the Furutsu-
Novikov equation:

�xkf�x1,x2�� = �xkxj�	 � f�x1,x2�
�xj


 . �10�

This approximation is strictly valid for Gaussian distributed
processes also if they are arbitrary nonlinear. With it we end
up with the two equations

�

�t
Cxx�t� = Cxx�t���1f�x�0�,x�− ����

+ Cxx�t − ����2f�x�0�,x�− ���� + Cx��t� �11�

and

�

�t
C�x�t� = C�x�t���1f�x�0�,x�− ����

+ C�x�t − ����2f�x�0�,x�− ���� + C���t� ,

�12�

where we have used the stationarity of the process. �i denotes
the derivate with respect to the function’s ith argument. Both
equations are similar to the linear case �4� and �5�. The sec-
ond derivate is given by

�2

�t2Cxx�t� = ��f1�2 − �f2�2�Cxx�t� + �f1�Cx��t� − �f2�C�x�t − ��

+
�

�t
Cx��t� , �13�

where the abbreviation �f i�= ��i f�x�0� ,x�−���� is used. For t
�� it is

�2

�t2Cxx�t� � ��f1�2 − �f2�2�Cxx�t� − �f2�Cx��� − t� . �14�

For short correlation times of the noise, the delay can again
be identified by a jump in the second derivative of the cor-
relation function, which is a manifestation of the system’s
response after time � to the short disturbances of the system.

In the following, numerically generated time series of
three different systems are analyzed to verify the idea of the
delay estimation. The first example is a linear system, the
second is a periodic limit cycle, and the third one is a non-
linear system with two delays.

III. NUMERICAL EXAMPLES

A. Linear case

As a first example, the correlation function of the linear
system �3� with parameter values a=−1, b=−1, �=1, and
�-correlated noise is addressed. For 0� t�� the solution
is Cxx�t�=C0− D

2 t with the diffusion constant D
��−	

	 ���0���t��dt �28�. For �� t�2� this solution can serve

as the prefunction and �tCxx=aCxx+b�C0− D
2 �t−��� gives the

solution of the second interval, and so on �“method of
steps”�. Between the two intervals, the second derivative is
discontinuous. We solve the SDDE numerically using a Heun
scheme to show how the delay can be estimated from a time
series �29�. The diffusion coefficient is D=0.01, the step size
is 
t=10−3. From the time series we calculate the correlation
function using N=106 data points with a Savitzky-Golay fil-
ter �comparable results are also obtained with a simple sec-
ond order difference�. The parameters of this differentiation
has to be varied in order to give the best results.

Figure 2 shows the result for �-correlated noise as well as
for noise with finite correlation length � /20. The correlated
noise is generated by an Ornstein-Uhlenbeck process. The
second derivative clearly shows a jump at the delay time; see
Fig. 2�b�.

B. Nonlinear dynamics

We present two examples to show that the delay produces
a distinct signature in the correlation also in the case of non-
linear systems. The first example is the Mackey-Glass equa-
tion. We chose the periodic regime for which it is not pos-
sible to estimate the delay without external perturbation or
noise, respectively. The second example, a laser equation,
considers the case of multiple delays.

C. Periodic case

The following system is a model for the production of
white blood cells proposed by Mackey and Glass �2�:

ẋ = − x + �
x�

1 + x�
n . �15�

Here we chose �=2 and n=10 for which the solution lies on
a limit cycle. For this case it is not possible to distinguish the
dynamics from an ordinary differential equation and thus it is
not possible to estimate the delay. This can be explained as
follows: The nature of a delay equation is that a function �
defined on the interval �t−� , t� can unambiguously describe
the system’s time evolution. In the present case, due to the
periodicity, the knowledge of one point (x�t−��� ,x�t�) is suf-
ficient to estimate the future. But this is also the property of

0 1 2 3 4−2 10−3

0

2 10−3
4 10−3
6×10−3

C

t
0 1 2 3 4 5 6 7 8−5 10−3

0

5 10−3

1 10−2

∂ t
tC

t

a) b)
×

×

×

×

×

×

FIG. 2. �a� The correlation function for the linear SDDE �3� with
a=−1, b=−1, D=0.01 calculated from the numerical solution of the
SDDE with step size 
t=0.001 from N=106 data points. The case
of correlated noise is not distinguishable from the �-correlated case.
�b� Second derivative of the correlation function for �-correlated
noise �symbols� as well as for noise with finite correlation length of
� /20 �line�.
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an ordinary differential equation. Because dissipative sys-
tems typically contract to low dimensional manifolds, there
exists a broad class of systems, where the estimation of the
delay is not possible without disturbances or noise.

We disturb the system with a Langevin force of strength
D=0.05. Figure 3 shows the numerically generated time se-
ries of the undisturbed as well as of the disturbed system.
From N=106 data points the correlation function is calcu-
lated; see Fig. 4. The second derivative of the correlation
function clearly shows the discontinuity at the delay time;
see Fig. 4�b�. Thus after disturbances are applied to the sys-
tem, the delay can be estimated from the time series.

IV. ESTIMATION OF MULTIPLE DELAYS

In certain situations, more than one delay governs the
dynamics. An example is a laser with two feedbacks, where
the light takes two different ways back to the laser. For many
circumstances the Ikeda equation is a model for laser sys-
tems with feedback �8�. We extend the model for wavelength
dynamics �30� to the case of two delays and take into ac-
count dynamical noise:

ẋ�t� = − x�t� − 
sin2�x�t − �1�� + sin2�x�t − �2��� + ��t� .

�16�

The delays �1=10 and �2=13 are chosen. The system is dis-
turbed by noise with strength D=0.01. The length of the time
series is t=10 000, from which the correlation function is
calculated; see Fig. 5�a�. The second derivative of the corre-
lation function clearly shows the two delays in the form of
two sharp bends; see Fig. 5�b�. Notice that the bends are
exactly located at the delay times and are not displaced due
to the nonlinearity �31,32�. Similar results are obtained for
arbitrary different delay times.

V. CONCLUSION

The idea of this paper is to use inevitable system inherent
or external random perturbations to identify the delay from
time series. It has been shown that by using these perturba-
tions, it is possible to estimate the delay by a discontinuity in
the correlation function. This can be shown rigorously for
linear systems; see Eq. �8�. For a nonlinear system a Gauss-
ian approximation has been used to get an analogous result
to the linear case; see Eq. �14�. The only condition is that the
noise is short-correlated compared to the delay time and the
strength is sufficiently large. The results have been tested for
different numerical examples. Even for a noisy periodic limit
cycle of the highly nonlinear Mackey-Glass system, the de-
lay can be estimated. Furthermore, also multiple delays can
be identified as it is shown for the Ikeda model with two
feedbacks. This idea closes some gaps for delay estimation
presented up to now in the literature. Most work was done to
identify the delay from chaotic systems with—if any—
moderate dynamical noise �12–24,31,33�. For stochastic de-
lay differential equations the results in the literature are not
very systematic. One method exists for linear systems �24�,
and another for coupled oscillators where the delay is in the
coupling �23�. All the methods have in common that it is
necessary to decorrelate the dynamics between x�t� and x�t
−�� either by chaos or by noise. In this sense the method
presented here is an evident extension for noisy systems: it is
based solely on the response of the system to the noise or, in
other words, on the interaction of the delay with the noise.
Thus it uses the constructive role of noise and therefore relies
on sufficient high noise amplitudes. The use of the presented
approach for multivariate variables is straightforward. The
only required precondition is that the noise acts directly on
the observed variable. A potential limitation of the procedure
is the calculation of the second derivative of the correlation
function. This demands a statistic which converts fast
enough and a time series which is relatively long; but the
length of the time series is of comparable size as in different
approaches; see, for example, �33�. The other crucial limita-
tion is that large enough noise amplitudes are needed. A
condition for sufficient strong noise is that the correlation
function drops linearly at the origin. If, however, the noise
amplitude is too small, the discontinuity in the second de-
rivative is less pronounced. In this case the deterministic
dynamics dominates the dynamics and the other cited
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x

FIG. 3. Time series of the Mackey-Glass equation in the peri-
odic regime, with noise D=0.05 �symbols� and without noise �line�.
The parameters are �=2, n=10, �=1.

0 1 2 3 4
−0.2

−0.1

0.0

0.1

0.2

t

∂ t
tC

0 1 2 3 4
−0.05

0.00

0.05

0.10

t

C

a) b)

FIG. 4. The correlation function of the Mackey-Glass equation
calculated from the time series with N=106 data points and noise
strength D=0.05. Parameters are the same as in Fig. 3.
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FIG. 5. The correlation function of the Ikeda-model �16� with
two delays at �1=10 and �2=13 disturbed by noise with strength
D=0.01. �a� The correlation function and �b� the second derivative
of the correlation function.
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methods may be used with better results. To conclude, for
systems with internal or external short-correlated perturba-
tions, it is sufficient to analyze the correlation function to
estimate the delay, which is very simple to perform.
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